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Abstraei The micrcscopic Static s t ~ c t u r e  of dilute binary colloidal Suspensions, for 
w m p i l i o n s  ewering the full molar fraction range, are investigated using static light 
scattering ffpiments .  The mktures of liquid-like ordered suspensions are made from 
charged polystyrene particles having averaged radii 01 42 nm and 65 om. The data 
are compared with the results of integral equation theories using the extended re-scaled 
mean spherical approximation and the hypernetted chain approximation and Rogers- 
Young closure schemes, and to Monte Carlo computer simulations The values of 
charges needed in the Yukawa-type pair potentials are delermined from 615 to the 
scatlering data of the pure components, and they are l r p l  consbnt for Ule mixtures. Of 
the various theoretical schemes used, the RogekYoung method is found to be the most 
salisfactoty. In order to fully describe the experimental data, it is necersaty to take the 
intrinsic polydispersity of the NK) pure componenu into account. 

1. Introduction 

Although a lot of work has been done on the microscopic structure of monodisperse 
colloids [1-6], much less is known in the case of colloidal mixtures or, more gener- 
ally, in the case of polydisperse systems [7-91. The reason for this is the increased 
complexity of their description, both from the experimental and theoretical points of 
view. But if this complexity can properly be taken into account, the study of mixtures 
becomes more appealing due to the appearance of new phenomena (Le. new types 
of microscopic order, new types of phase behaviour, etc) which are not present in 
monodisperse suspensions. 

Restricting ourselves to the case of binary mixtures of strongly interacting colloidal 
particles, new questions concerning the dependence of reEevant statistical mechanical 
quantities (like the partial pair distribution functions and the partial static structure 
factors) on the molar fractions of both components can be addressed. It is OUT aim 
to study systematically prototypes of binary mixtures of charged colloidal particles 
(polystyrene macro-ions of diameters c, = 84 nm, u2 = 130 nm and effective charges 
of the order of some hundreds of electrons) in the full range of molar fractions, 
ranging from one pure component to the other. The total volume fraction of the 
mixture is chosen such that the systems remain well inside the liquid phase ( I p T  a 
5 x and it is kept nearly constant. 
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Like the monodisperse colloidal suspensions, the binary mhtures can be experi- 
mentally studied using static light Scattering (sLS) techniques. However, the quantity 
that is measured in binary mixtures, namely the measured static structural factor 
S"(q), reflects both the correlations between the two species and the intraparticle 
scattering properties. These last contributions, which do not appear in S'(4) in 
the case of monodisperse suspensions, destroy the usual statistical mechanical inter- 
pretation of the main features of S'(4). For example, SM(4 = 0) can no longer 
be interpreted as the isothermal compressibfity of the system, the peak position of 
S'(4) is no longer simply related to the mean interparticle distance, etc. 

The theoretical interpretation of the SIS data can be performed using integral 
equation theories l ie the extended rescaled mean spherical approximation (Rh4SA) 
17, SI, the hypemetted chain approximation (HNC) and the Rogers-Young closure 191. 
In addition, the data can also be analysed performing Monte Carlo (MC) computer 
simulations. The interaction potential, which is needed in these schemes, is modelled 
according to the repulsive part of the well-known DLVO potential: a Yukawa-type 
pair interaction. In contrast to the monodisperse suspensions, the analysis of SLS data 
of binary mixtures requires a further model concerning the single-particle scattering 
mechanism. We consider the particles as spheres of homogeneous scattering material 
with a certain refractive index, np, independent of the particle size. 

The parameters entering the theoretical schemes are the total density, the molar 
fraction of one component, the particle diameters, the effective particle charges and 
the temperature, which determine the DLVO potentiaL While the former parame- 
ters are accessible experimentally, the effective charges are dillicult to measure; to 
determine them, we apply the fitting procedure to the peak value of the measured 
structural factor of the pure components. 

In this work, trends of several features of S'(4) are identified and analysed using 
the concept of charge and size bidispersities, as the molar fraction range is fully 
exploited. In particular, this concept explains the systematic variation of the peak 
height and position of S'(4) as a function of the molar fraction. However, the 
charge and size bidispenities alone are not suificient to fully interpret the SLS data. 
These data are definitely also affected by the intrinsic and unavoidable charge and size 
polydispersity of each of the components. 'lb introduce the intrinsic polydispersity in 
the theoretical approaches, we construct a model in which the two pure componens 
are represented by a discretized version of the continuous Schulz distribution. In this 
way, a quantitative agreement with the measured structural factors is found. 

The paper is organized as follows. The static light scattering relations, the exper- 
imental equipment, the sample preparations and the measurements are described in 
section 2. In section 3 we describe the MC simulations, the RMSA, the HNC and the RY 
integral equations for the determination of the static structure functions. Section 4 
is devoted to the presentation of the results and to the comparison of the experi- 
mental data with the theoietical findings. Finally, the conclusions are summarized in 
section 5. 

2. Scattering relations and experlmental details 

It is worthwhile to begin by giving some introduction to the method of performing 
static light scattering experiments, to the technical details of the light scattering setup, 
to the sample preparation and to the sample characterization. 
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In a static light scattering experiment, the measured averaged scattered intensity 
from a sample havingp different kinds of scattering spheres is given by 

where N, is the number of particles of type a, ba(4) is &e corresponding scattering 
amplitude, q is the magnitude of the scattering Wavevector q, and r,? is the position 
of particle i of type a. Considering a unit volume of the sample, this relation can 
always be written as 

- 
where n is the total number density of the sample, P(4)  is the averaged form factor 
and SM(q)  is the measured structural factor that contains information about the 
interparticle correlations of the sample. For spherical particles of homogeneous 
scattering material, the averaged form factor, apart from a constant, is 

where .re = na/n is the molar fraction of species a and 

where V;, is the volume of an a-particle, na and n. are the refractive indices of 
the a-particles and of the solvent, respective$, j ,  is the first-order spherical Bessel 
function and ua is the a-particle diameter. In what follows, we assume that n; is 
independent of the sue of the spheres. 

The measured structural factor is defined by the relation 

1 p p  
SM(d = = CCb,(9)bp(9)Sap(9) 

' ( 9 )  n=1&1 

where 

are the partial structural factors. Here, hnP(q) is the Fourier transform of the total 
correlation function hap(') and N is the total number of panicles. 

For a non-interacting system of density no, the total correlation functions hno(q) 
go to zero and the measured structural factor approaches unity: this is obvious from 
equations (5) and (6). The corresponding measured intensity becomes 
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For a two-component system, the measured structural factor, obtained directly from 
a SLS experiment, is given by 

(8) 
1 

= =[bf(q)S1i(d + b:(q)S22(4) + %(q)bz(q)Si&)l. 
P(q)  

Although the second line of this equation is relevant to the theoretical determination 
of S'(q), the first line shows how S'(4) is determined in the SLS experiment. 

To characterize the particles, we performed dynamic light scattering (DLS) ex- 
perimenls on very dilute samples of each of the two componets. The fact that the 
dynamic correlation functions exhibit a finite second cumulant Kz shows that the 
so-called pure components are, to some extent, polydisperse. From the cumulant 
analysis [lo, 111 we determined the standard deviations s, ,~  of the particle sizes using 
the relation s = K,/K:, where Kl is the first cumulant. It is with this qualification 
that we use the word 'monodisperse' when speaking about the samples having x1 = 0 
and x1 = 1. For them, we obtained the values s , ,~  = 0.1 rt 0.02. The dynamic light 
scattering experiments have been made in the homodyne mode. 

We used a light scattering apparatus (ALV, FRG) consisting of: (a)  a computer- 
controlled goniometer table with focussing and detector-optics; ( b )  a stabilized-power 
3 W argon laser (Spectra Physics); (c) a 4-bit real-time correlator (1023 channels); (d)  
a digital rate meter and (e) a temperature control which stabilized the temperature of 
the sample cell at T = (21 rt 1) 'C. Intensity data were corrected for the dark current 
rate of the photomultiplier and by the angle dependence of the scattering volume. 
Tho magnitude of the scattering vector 

47r4 
.\U 

q = - Sin(O/2) (9) 

ranges from 3x 10-3nm-1 to 33x nm-' at the vacuum wavelength of the incident 
light A, = 488nm in aqueous solutions with a solvent refractive index nr = 1.33. The 
beam first passed an index-matched fluid (silicon oil) and then entered the scattering 
cell, where it was focussed into the scattering volume. We used quartz tubes of lOmm 
outer diameter as scattering cells. 

All measurements were normalized to a reference sample (toluene) in the whole 
q region to correct laser power fluctuations and to get a standard of the incident light 
intensity. 

To have a higher resolution of the scattered intensity data within the region of 
the first maximum, we measured the scattering angles, up to the second maximum, 
by steps of lo and, in special cases, by steps of O S 0 .  The region where we expected 
to be on the plateau of the measured structural factor (SM(q)  = 1) was scanned with 
a resolution of 3O. 

The salt-free monodisperse and bidisperse samples are listed in table 1. The 
samples are diluted from highly concentrated polystjTene solutions (Dow Chem- 
icals) using deionized water. The 10 bidisperse samples are prepared starting 
from two well-characterized purely monodisperse batches of polystyrene spheres with 
average diameters ul = 84 nm and u2 = 130 nm. The partial volume fractions 
'Z$XP = 7rn,gm/6, OL = I ,& are also listed in table 1. 
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Table 1. Volume fractions of all 12 samples under study. The method 10 obtain 4& 
and e is explained in section 4. 

Sample 0;" 47 QP XIi' 

1 
2 
3 
4 
5 
6 
7 
a 
9 
10 
11 
12 

- 
5 x 10-5 
1 x 10-4 
1.5 x 10-4 
2 x 10-4 
2.5 x lo-' 
2.85 x 10-4 
3 x 10-4 
3.5 x 10-4 
4 x 10-4 
4.5 x 10-4 
5 x lo-' 

5.0 x 10-4 
4.5 10-4 
4 x 10-4 
3.5 x 10-4 
3 x 10-4 
z.5 x 10-4 
z.15 x 10-4 
2 x lo-' 
1.5 x 10-4 
1 x 10-4 
s x  10-5 
- 

- 
5.3 x 10-5 
9.5 x 10-5 
1.5 x 10-4 
2 x 10-4 
2.5 x lo-' 
3.1 x 10-4 
35 x 10-4 
3.85 x 10-4 
4.9 x 10-4 
5.55 10-4 
6.2 x lo-' 

4.5 x 10-4 
4.05 x 10-4 

3.15 x 10-4 
2.7 x 10-4 
2.25 x lo-' 

1.8 x 10-4 
1.35 x 10-4 
9 x 10-5 
4.5 x 10-5 

3.6 x lo-' 

1.93 x lo-' 

- 

0 
0.326 
0.494 
0.638 
0.733 
0.804 
0.856 
0.878 
0.913 
0.952 
0.978 
1 - 

'Ib minimize the ionic strength of the suspension, a cleaned mixed-bed ion ex- 
change resin was added to the samples, removing all small ions other than H+ and 
OH-. No investigations with added salt were made, since we were only interested in 
systems with strong Coulomb interactions. 

For the determination of the effective charges on the macro-ions, we prefer to 
obtain these values fitting the peak height of the measured structural factor by MC 
computer simulation and by integral equation theories. The direct experimental 
determinations of such quantities, by conductivity measurements and by pH measure- 
ments, produce data that are not yet fully reliable. A summary of the parameters 
characterizing the systems used in this study is given in tables 1 and 2. 

Table 2. Parameters charaderking the macro-ions of the pure components. 

Species ZMC zRMS.4 2°C Z" n [om] 

1 330 450 438 373 84 
2 280 325 323 288 130 

The concentrations were also checked by MC computer simulations and by integral 
equation theory, fitting once more the position of the first maximum of S'(q) [12]. 

3. Theory 

3.1. Monte Carlo coinpuler simulation 

To perform Monte Carlo computer simulations of dilute binary suspensions of charged 
polystyrene spheres within the framework of the two-component macro-ion fluid 
(TCM), we used the following pair potential 
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with 

which is the repulsive part of the well-known DLVO potential. Here 2, is the 
valence of (I macro-ion, L, = exp(2/ckBT) is the Bjerrum length and K the inverse 
Debye screening length. In salt-free systems, K is determined only by the monovalent 
counterions as 

The MC simulations were carried out using the standard Metropolis algorithm 
[13, 141 with N = N ,  + Nz = 864 particles. The other parameters included in the 
interaction potential are chosen case by case, in order to make comparisons with the 
SLS data. 

From the simulations wc computed the measured static structural factor S’(q), 
defined in (8), using the procedure suggested by Frenkel et af 1151. More precisely, 
S M ( q )  is computed rewriting equation (S), using (l), as 

in which 

b,(q) 
”(‘) = [ b,(q) 

for i  = 1,. . . ,NI  
for i = N l  + 1,. , . , N  

is calculated according to (4). ’lb decrease statistical fluctuations in SM(q) ,  the vector 
q is taken along three independent directions, namely the permutations of [loo]. 

This procedure saves substantial computing time as compared with first evaluating 
the partial structural factors Sa&) and then calculating SM(q) using (5 ) .  Secondly, 
this procedure is not affected by the truncation errors typical of finding the direct 
Fourier transform of g(r) .  

3.2. mended rescaled mean spherical approximation 

In this section, the rescaled mean spherical approximation (RMSA) for colloidal mix- 
tures interacting via a Yukawa-type pair potential is presented, and its application 
to suspensions of highly charged polystyrene spheres is illustrated. Since the details 
of the extended RMSA have already been reported [7], we only summarize its salient 
features needed for our further discussion. 

The three partial radial distribution functions gab(‘) and partial static structural 
factors can be determined from the Ornstein-Zernike (oz) equations 
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in connection with specific closure relations for the direct correlation functions c,@(r).  
This has to be supplemented with the rigorous boundaly conditions 

g,p(r) = 0 r < amp (15) 

which state that two hard spheres cannot interpenetrate. The MSA closure relation 

has found special attention, since it can be solved analyticdly for a Yukawa-type pair 
potential as given in (10). 

The MSA can lead to non-physical negative values of the gnp(r) close to the contact 
distance of two spheres in diluted and strongly interacting systems. In fact, to zeroth 
order in concentration of both species 

,a AP f r  r > cap (17) = 1 -ADLVO DLVOe-m 

which becomes negative for large coupling parameters. 
To overcome this feature, Hansen and Hayter [16] provide physical arguments 

for one-component repulsive Yukawa systems leading to the well-known rescaled 
mean spherical approximation. This RMSA procedure has been widely used for the 
interpretation of light scattering data of monodisperse samples [12, 17, 18, 191. 

In a recent paper, Ruiz-Estrada el ai [7] extended Hansen and Hayter's MSA 
rescaling arguments to mixtures of hard spheres interacting through long range re- 
pulsive Yukawa potentials with factorized coupling parameters. 

In this extension, the analytic MSA solution of the system of interest is com- 
bined, with the rescaling argument, with systems where the MSA radial distribution 
functions are negative close to the contact distance. According to this argument 
the physical diameters a, are enlarged to rescaled values d, > U, determined from 
g,,(r = de+) = 0, Le. determined in such a way that g,,(r) approaches zero for 
r - a,+ without showing a discontinuity. The values of the pair potential are kept 
constant, i.e. the coupling amplitudes A:Lvo and the screening parameter K are kept 
fied while increasing the diameter from U, to d,. 

We remark that, due to the additivity of the diameters in the MSA solution, there 
is no guarantee that glz(r = aiz+) = 0 holds exactly. It is observed, however, that 
g,2(a)12+) re 0 for all practical purposes, as long as the asymmetly in the sizes and 
charges of the two macro-ion species is not too extreme 17,231. 

(14)-(16). Instead of this, a method of MSA solution for the Yukawa system is estab- 
lished, based on the transformation of the original problem into the mathematically 
equivalent (but much easier) problem of determining the MSA partial structural factors 
of a corresponding primitive model system with point-like counter-ions. 

A comparison of the extended RMSA radial distribution functions with computer 
simulation data of Kremer ef a1 120, 211 is quite satisfactoly as far as the distance 
of closest approach and the prediction of the position of the maxima and minima 
are concerned [SI. However, the RMSA somewhat underestimates some quantities, 
especially the height of the first maximum of gma(rj. This is a feature that the 
extended RMSA for mixtures shares with the well-known RMSA in the monodisperse 
case. The underestimation of the peak height is, however, only appreciable in strongly 
coupled systems. 

The pair correlation functions are not calculated by directly solving equations 



4466 R Krause et a1 

3.3. Hypeme&ted chain and Rogers-Young approximation 
The problem of adjusting the coupling parameters in the RMSA in a somewhat arbi- 
trary way can be largely overcome if the 02 equations are solved using other closure 
relations. Of particular relevance are the hypernetted chain (HNC) [ 131 and Rogers 
Young (RY) [22] closures. As compared to the rescaled mean spherical approximation, 
which is a h e a r  dosure, the HNC and RY are treating the direct correlations in a 
nonlinear, and improved way, as functions of the interaction potential. However, this 
more appropriate description of the correlations requires a numerical implementation 
of the HNC and RY schemes, in COntraSt to the RMSA. 

For a multicomponent system, the HNC closure is 

haP(r) = -1 + exp[-W,,(r) +hop(‘) - ceP(r)] a,P = 1, ......, p (18) 

where p = (k,T)-’ and cap(‘) is the direct correlation function. 
The RY closure is given by 

The function 

f(r) = 1 - exp(--ir) (20) 

depends on the mixing parameter 7; this parameter is changed in the numerical 
solution of the RY and 02 equations, in order to get at least partial thermodynamic 
consistency [2]. The RI approximation, which gives better results than HNC and RMSA 
when compared with MC simulation data [9, U], is, however, more time-consuming 
than the other schemes. The details of the numerical solutions of the RY and HNC 
schemes for a multicomponent Yukawa system are given in recent publications [9, 

We applied these integral equation methods to a two-compnent Yukawa system 
in which each component is assumed to be monodisperse, and to a two-component 
Yukawa system in which each component is assumed to be polydisperse either in size 
and in charge. 

In this last case, the distributions of particle sizes and charges of each component 
are represented by a histogrammatic reduction of the continuous Schulz distribution 
[9]. In fact, it is well-known that the measured size distribution can be well fitted 
using such a distribution [24, 251. It is given by 

-231. 

where t is a measure of the width of the distribution, r(r) is the gamma function and 
( U )  is the mean value or first moment of the distribution. 

Figure 6 shows the model used to treat the intrinsic polydispersity of each com- 
ponent. The positions and the weights of each threecomponent histogram are de- 
termined equating the first six momen6 of the histogrammatic and continuous distri- 
butions. We expect that this model should be effective in describing structural and 
thermodynamical properties since Vrij [26] showed that a polydisperse hard sphere 
system, treated within the Percus-Yevick approximation, is fully characterized by the 
first six momens of the size distribution. 
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4. Results 

In this section we compare our SLS data obtained for the 12 samples, whose param- 
etets are summarized in tables 1 and 2, with the corresponding computer simulation 
data and with the integral equation results. 

Binary samples of particles having diameters U, = 84 um and uz = 130 nm have 
been prepared for different values of the mole fraction x1 = nl/(nl  +n,). The total 
volume fractions @T = of the different samples have been chosen such that the 
measured structural factor, given in (S), describes the normalized scattering function 
of a binary system located well withiin the homogeneous liquid phase. 'kble 1 lists 
the volume fractions of both components and the molar fractions of component 1 
for all 12 samples studied. The fitted values of the volume fractions, @tt, have been 
determined by fitting S*=V(q) to the position of the main peak of p ( q ) .  All the 
four different theoretical approaches (RMSA, mc, m, MC) gave for each sample the 
same values of @E. 

To determine the effective charges on the macro-ions of species 1 and 2, we 
fitted the peak height of StaeoV(q) to the corresponding experimental value of the 
two pure samples (samples 1 and 12). The results of the fits are summarized in 
table 2. In this case the three theoretical approaches and the MC simulations give 
different results for the effective charges. This is not surprising since, in determining 
the correlation functions, all the previous schemes treat the interaction between the 
particles in different ways. For example, the RMSA somewhat underestimates the 
structure of strongly coupled dispersions, as already mentioned above, leading to 
values of Z r  larger than the others. The values of the charges so determined are 
then used to evaluate the measured static structural factor, S'(q), in all the other 
intermediate samples (samples 2 to 11). We also note that the smaller particles have 
the larger effective charge, but this fact depends only on the macro-ion preparation. 
The particles of species 1 have sulfate surface groups whereas those of species 2 have 
carboxylated surface groups; those of the first kind are more easily ionized. 

The comparison between SLS data and RMSA fit for thc 84 nm macro-ion system 
(sample 12) is quite satisfactory, i.e. SwsA(q) provides a rather accurate fit of 
SsLs(q), although the second and thud maxima of SRMSA(q) are slightly shifted to the 
right, as shown in figure 1. These features of the RMSA have been observed quite 
generally [U, 271. 

The comparison between the theoretical fit and the SLS data for the 130 nm 
macro-ion system (sample 1) is less satisfactory: the second and thud maxima of 
SlhcOV(q) are largely out of phase. There is a main reason for this less satisfactory 
agreement and it is of experimental origin. Since the structural features of SGLs(q) 
of this sample are at considerably lower values of q than those of sample 12, they 
are affected by larger experimental errors, which arise mainly from reflections of the 
incident beam from the sample cell. 

Keeping k e d  rhe charges Z y A  determined in the pure samples, the measured 
structural factors SRMSA(q) are compared with the SLS data at intermediate molar 
fractions (samples 2 to 11). As can be seen in figure 1, overall agreement is found, 
although the second maximum is always somewhat out of phase. Further disagreement 
is also observed at small wavevectors q. 

Summarizing, it can be stated that the extended RMSA provides a fast and con- 
venient device to describe (at least qualitatively) the structure of mixtures of highly 
charged polystyrene spheres. 



4468 R fiause et a1 

0.0 4 I 

I 0.0 j 

1.6 2.0 - - 
U- U 

x- 0.8 =- 1.0 
m v, 

~ m p l e  6 

0.0 

1.6 2.0 

0.6 1.0 

S"l* 5 
0.0 

2.0 

1 .o 

1.6 

0.8 

0.0 4 I 
1.6 I 

0.8 i 
sompla 3 

0.0 

1.6 I 
0.8 

sompls 2 

0.0 

I .6 

0.8 

0.0 

1 .B 

0.6 

0.0 

1.6 

0.8 

0 10 20 
q t 1 ~-'nm-' I 

F & m  1. Comparisons beween Ihe experimentally measured sImcIural factors (000) 
and lhwc delermined with mu (-). The system parameters used are given in 
tables 1 and 2. 



Structure of binary coNoidal mixtures 4469 

1.6 2.0 - 
U U 

m U7 
y 0.8 F 1.0 

0.0 0.0 -I I 
1.6 

0.6 

0.0 

1.6 

0.8 

0.0 

1.6 

0.6 

0.0 

1.6 

0.8 

0.0 4 I 
1.6 

0.8 

0.0 

0.0 

1.6 

0.8 

0.0 

1.6 

0.8 

0.0 

1.6 

0.8 

0 10 20 
q ~ ~ ~ - ’ n m - ’ l  

0 10 20 
q ~ 1 0 - ~ n m - ’ ]  

Figure 2. Comparisons beween the experimentally mensured structural faclon (000) 
and lhase determined with RY (-). The q t e m  parameters used are given in tables 1 
and 2. 



4470 R Krause et a1 

Figure 2 shows comparisons between RY fits and SLS data for the same samples. 
The fitting procedure is entirely equal to the one sketched for the case of the RMSA. 
An overall qualitative agreement is found. However, the phase shift after the first 
maximum of S'(q) and the poor agreement at small q values are still presenr. In 
figure 3 we compare MC simulation results with sLS data of sample 3 and 9. For this 
case, we used the same fitting procedure as before. The overall behaviour of SMc(q) 
is like that shown by SRy(q) .  

Figurr 3. Comparisons beween the experimentally measured structural faclon (000) 
and l h m  determined with MC computer simulalions ( A A A ) .  Ihe fyslem parameters 
used are given in tables 1 and 2. (0) sample 3; (b) sample 9. 

The result of the comparison between @"V(q) and p ( q )  indicates that a better 
'physical description' of the systems is required to recover the experimental data. In 
what follows, we will show that the introduction of the intrinsic polydispersity of each 
component is essential in getting a quantitative agreement with the experimental data. 
Going back to table 2 we see that the effective charges used in the RY fits are more 
close to those obtained from MC simulation. 

After these general observations, we will now comment on some characteristic 
and important trends that can be extracted from the complete data set. With regard 
to the behaviour of the peak height of the structural factors as functions of the molar 
fraction, we show in figure 4 the values of the peak height of S'(q), denoted by ,SEax, 
as obtained from the experiments and from the integral equation theories. 

We stress once more that the results from the integral equation theories have 
been obtained fixing once for all the values of the macro-ion charges using a fit for 
two pure components. No further adjustments have been made as far as the molar 
fraction is concerned: a good agreement is found. We see also that the experimental 
data are systematically slightly below the theoretical results. This is due to a finite 
resolution of the data aquisition (see section 2) so that the experimental values of 
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Fipm 4. Values of S& as measured from SLS experiments and as obtained from RMW, 
HNC and RY as functions of the molar fraction X I .  

pm% have to be interpreted as a lower limit. The fact that there is this type of 
systematic behaviour as compared to having GmE smaller than the theoretical result 
for some values of x, and larger for other values (see Htirtl and coworkers [27), is 
very satifactoly; it shows that the sample characterization on the one hand and the 
theoretical schemes on the other hand lead to a consistent description. 

The data of S& show a minimum around x1 % 0.5. This behaviour can be 
understood in terms of the size and charge bidispersities of all the systems. As 
shown in previous work by Frenkel et a1 [9] on polydisperse hard sphere systems and 
by D'Aguanno and Klein [9] on polydisperse Yukawa systems, a maximum in the 
polydispersity corresponds to a minimum of S2- At the same time, it was shown 
that the amount of polydispersity is closely related to the presence or absence of 
the structure of SM(q) beyond the first maximum. This is also observed in figure 1; 
samples 3 to 6 exhibit less developed structure than the others. 

Figure 5 shows the behaviour of the size bidispersities, that is, the diameter 
bidispersity s, = ((u2) - (U)')/(U)~ and of the volume bidispersity sb = ((d) - 
($)*)/(u~)~ as functions of xl, as well as the behaviour of the charge bidispersity 
s, = ((Z') - (Z)2)/(Z)2. Despite the fact that we cannot quantify the way in which 
each one of these contributions enters into S M ( q )  (see equations (4)-(S)), we can use 
the positions of the maxima of s,, sz and sb to estimate a region in xt in which Szm 
is expected to have its minimum. From figure 5 we see that arbitrary combinations of 
so, sz and sb reach the maximum in the region 0.4 < x1 0.8. It is this region that 
contains the observed minimum of S& plotted as a function of xl. The samples that 
lie in this region also show less pronounced structural features for q values beyond 
the first maximum of SM(q)  (see figures 1 and 2). 

To fully recover the experimental S'(q), we studied several samples taking into 
account the intrinsic polydispersity of each component The model is shown in 
figure 6, for the specific case of sample 3. Each one of the polydisperse species is 
replaced by a 3- component histogram with a standard deviation = 0.1 (see section 
2). We assumed that the particle sizes obey the Schulz dhtribution; to construct the 
histogram we used the procedure given in the previous section. 
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F b r r  5. Size bidispersity (----), charge bidispersity (- - -) and volume bidispersity 
(-) as functions of the molar fraction X I .  

1300 1700 
diameter I A1 

Figure 6. Partide size distributions lor sample 3 with the standard deviations SI = sz = 
0.1. The 3 vertical stripes in each distribution are the histogrammatic reprentalion of 
the Schulz distributions (---. and - . -). 

Figures 7 (a-b) show the results of SM(q)  for both pure samples (samples 1 
and 12). The full curves refer to the HNC fits that use the intrinsic polydisperse 
model, whereas the broken curves refer to the monocomponent model. As expected, 
the intrinsic polydisperse model describes correctly both the phase behaviour of SM(q)  
beyond the first maximum, and the unusually high values at small q. 

Figures 8 (a-c) show the results of S M ( q )  for three intermediate samples (sam- 
ples 3, 9 and IO) where the polydispersity as determined for the pure samples has 
been included. In the polydispersity model we assumed that the surface charge of 
each species is constant. Once again, the intrinsic polydispersity model (full cutves) 
reproduces, with a high accuracy, the measured structural factors. This is particularly 
true for the improved agreement between the experimental data and the theoretical 
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Figure 7. Experimenlally measured slatic smclural factor eLS(q) of the pure sample 
1 (o o a), compared with HNC mults from the intrinsic polydispersity model with SI = 
0.1 (-) and the HNC results from the monocompcnent model (----). The syslem 
parameters are given in table 3. (0) sample 1; (b) p u n  sample 12. 

results for q values beyond the first maximum. The behaviour at small q is, in con- 
trast, mainly determined by the bidispersity; here the inclusion of the polydispersity 
results in only small corrections. 

The parameters of these fits are listed in table 3. ?b recover the experimental 
SM(q), we have to increase the values of the volume fractions as well as the values of 
the charges, since the polydispersity reduces the value of the peak height and shifts 
the peak position to lower q. This is consistently shown by the fitting parameters of 
table 3 compared with the corresponding parameters listed in tables 1 and 2. 

Table 3. Systems paramelem or the two p u n  samples (1 and 12) and of three b i d i s p e  
samples (3,9 and 10) using intrinsic polydispersity, SI = sz = 0.1, within the HNc closure. 

~~ ~ 

1 - 4.7 x lo-‘ - 400 0 

10 5.13 x 10-4 9.4 x 10-5 540 400 0.953 
12 6.4 x lo-‘ - 540 - 

3 9.9 x lo-’ 3.76 x IO-‘ 540 400 0.455 
9 4.03 x io-‘ 1.41 x 10-4 540 400 0.914 

1 

5. Conclusions 

This work compares experimentally obtained static structural factors PLs(q) of dilute 
binary colloidal suspensions with corresponding MC computer simulations and results 
from integral equation theories. The static light scattering experiments have been 
performed on samples of polystyrene spheres of average diameters U, = 84 nm and 
u2 = 130 nm and of volume fractions of the order of 4 NN 5 x All samples 
were treated by ion exchange resin and were therefore of low salinity. 
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The effective valencies Z$-v, a = 1,2, used in our theoretical calculations of 
SM(q) were determined by adapting the peak height of the calculated structural 
factors Sthm’Y(q) of each pure sample to the experimentally observed ones. A good 
overall agreement is found between $=(q) and Sbq(q) for all bidisperse samples, 
keeping fixed the effective valencies Z$”’Y, so determined. 

It turns out that the extended RMSA, the hypernetted chain and Rogers-Young 
approximations are quite useful as fitting devices for strongly coupled binary systems. 
In particular the extended RMSA gives quick answers due to its analytical nature, 
whereas the HNC and RY approximations are more reliable for the particle and sus- 
pension characterization. 

With the intrinsic polydispersity model, in which the particle size distribution was 
described by the Schulz distribution, we where able to reproduce the fine details of 
the measured structural factors in a satisfactory way. This last comparison shows that 
the measured S M ( q )  at small q values are dominated by the sample bidispersity and 
that, at the same time, the behaviour of SM(q) at largeq values are mainly determined 
by the intrinsic polydispersity or each mmponent. 
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